
Databases Project - Spring 2021

Team 23
Noureddine Gueddach, Benedek Hauer and Sebastian Velez

May 1, 2021

Deliverable 1

Assumptions

We assumed that each victim is associated with exactly one party and exactly one
collision. A party can be associated with multiple victims (if, for example, there were
multiple passengers in the vehicle driven by the party), but can only be involved in
exactly one collision. We assumed that a collision involves at least a party.

Entity Relationship Schema

1. Schema

Figure 1: ER schema, where underlined text corresponds to a primary key, and
italic text corresponds a foreign key. The "other" fields references other entities
and attributes. They can be found below. We decided to make multiple figures for
visualization purposes.

1

Figure 2: Collisions and other entities.

Figure 3: Parties and other entities.

2

Figure 4: Victims and other entities.

2. Description :

At first, we thought each person was uniquely identifiable (which would correspond
to victim_id and party_id), by a social security number or any other unique id, and
thus, that the same person could be involved in multiple collisions. We had decided
to have a party table, which only contained a way to identify a person. From there,
party was separated in two tables in ISA relationships: a party could be an active
party (a driver for example) and/or a victim.

We then learned that a person was not identifiable, so we had to change our
scheme: a victim couldn’t be directly associated with a party using only the id.
Instead, a victim is associated with a party and a collision with the case_id and
the party_number. Using both those attributes, we can obtain the party_id with

3

which the victim is involved.

We observed that multiple collisions could have the same primary collision factor
(PCF), and thus decided to make it into an entity.
We realized that multiple collisions shared the same attributes description, like
weather, road surface, road condition and others. Same goes for the victim and
party tables. We decided to make those descriptions into other entities in order to
save space, by avoiding repeating the same descriptions over and over again.

Relational Schema

1. ER schema to Relational schema :
Note in the following, we underline the fields corresponding to a primary key and

put the foreign keys in italic.

Collision(case_id : integer,
pcf_violation : int,
collision_severity: integer,
collision_date : date,
collision_time : string,
county_city_location : integer,
jurisdiction : char(4),
hit_and_run : char,
lighting : char,
location_type : char,
officer_id : varchar(8),
pcf_violation_subsection : char,
population : integer,
primary_collision_factor : char,
process_date : date,
ramp_intersection : integer,
road_condition_1 : char,
road_condition_2 : char,
road_surface : char,
tow_away : char,
type_of_collision : char,
weather_1 : char,
weather_2 : char)

PCF(pcf_violation : integer,
pcf_violation_category : varchar(33))

Collision_Severity(
collision_severity: integer,
collision_severity_description: varchar(20))

Hit_And_Run(
hit_and_run: char,
hit_and_run_description: varchar(15))

4

Lighting(
lighting: char,
lighting_description: varchar(39))

Location(
location_type : char,
location_type_description : varchar(12)

Primary_Collision_Factor(
primary_collision_factor: char,
primary_collision_factor_description: varchar(22))

Road_Condition(
road_condition: char,
road_condition_description: varchar(14))

Road_Surface(
road_surface: char,
road_surface_description: varchar(8))

Collision_Type(
type_of_collision: char,
type_of_collision_description: varchar(10))

Weather(
weather: char,
weather_description: varchar(7))

Party(case_id : integer,
party_number : integer,
age : integer,
sex : char,
at_fault : char,
cellphone_use : char,
financial_responsibility : char,
hazardous_materials : char,
movement_preceding_collision : char,
other_associated_factor_1 : char,
other_associated_factor_2 : char,
party_drug_physical : char,
safety_equipment_1 : char,
safety_equipment_2 : char,
party_sobriety : char,
party_type : integer,
school_bus_related : char,
statewide_vehicle_type : char,
vehicle_make : integer,
vehicle_year : integer)

5

Movement_Preceding_Collision(
movement_preceding_collision : char,
movement_preceding_collision_description : varchar(26))

Party_Type(
party_type : integer,
party_type_description : varchar(14))

Vehicle_Type(
statewide_vehicle_type : char,
statewide_vehicle_type_description : varchar(35))

Vehicle_Make(
vehicle_type : integer,
vehicle_type_description : varchar(28))

Victim(victim_id : integer,
case_id : integer,
party_number : integer,
safety_equipment_1 : char,
safety_equipment_2 : char,
victim_degree_of_injury : integer,
victim_ejected : integer,
victim_role : integer,
victim_seating_position : char,
victim_age : integer,
victim_sex : char)

Degree_Of_Injury(
victim_degree_of_injury : integer,
victim_degree_of_injury_description : varchar(24))

2. DDL :

CREATE TABLE Collision (
case_id integer not null,
pcf_violation integer not null,
collision_date date,
collision_time varchar(20),
collision_severity integer,
county_city_location integer,
hit_and_run char,
jurisdiction char(4),
lighting char,
location_type char,
officer_id varchar(8),
pcf_violation_subsection char,
population integer,
primary_collision_factor char,

6

process_date date,
ramp_intersection integer,
road_condition_1 char,
road_condition_2 char,
road_surface char,
tow_away char,
type_of_collision char,
weather_1 char,
weather_2 char,
primary key (case_id),
foreign key (pcf_violation) references PCF(pcf_violation)
foreign key (collision_severity) references Collision_Severity(collision_severity)
foreign key (hit_and_run) references Hit_And_Run(hit_and_run)
foreign key (lighting) references Lighting(lighting)
foreign key (location_type) references Location(location_type)
foreign key (primary_collision_factor) references

Primary_Collision_Factor(primary_collision_factor)
foreign key (road_condition_1) references Road_Condition(road_condition)
foreign key (road_condition_2) references Road_Condition(road_condition)
foreign key (road_surface) references Road_Surface(road_surface)
foreign key (type_of_collision) references Collision_Type(type_of_collision)
foreign key (weather_1) references Weather(weather)
foreign key (weather_2) references Weather(weather)

)

CREATE TABLE PCF (
pcf_violation integer,
pcf_violation_category varchar(35),
primary key (pcf_violation)

)

CREATE TABLE Collision_Severity(
collision_severity : integer not null,
collision_severity_description : varchar(20),
primary key (collision_severity)

)

CREATE TABLE Hit_And_Run(
hit_and_run : char not null,
hit_and_run_description : varchar(15),
primary key (hit_and_run)

)

CREATE TABLE Lighting(
lighting : char not null,
lighting_description : varchar(39),
primary key (lighting)

)

7

CREATE TABLE Location(
location_type : char not null,
location_type_description : varchar(12),
primary key (location_type)

)

CREATE TABLE Primary_Collision_Factor(
primary_collision_factor : char not null,
primary_collision_factor_description : varchar(22),
primary key (primary_collision_factor)

)

CREATE TABLE Road_Condition(
road_condition : char not null,
road_condition_description : varchar(14),
primary key (road_condition)

)

CREATE TABLE Road_Surface(
road_surface : char not null,
road_surface_description : varchar(8),
primary key (road_surface)

)

CREATE TABLE Collision_Type(
type_of_collision : char not null,
type_of_collision_description : varchar(10),
primary key (type_of_collision)

)

CREATE TABLE Weather(
weather : char not null,
weather_description : varchar(7),
primary key (weather)

)

CREATE TABLE Party (
case_id integer not null,
party_number integer not null,
age integer,
sex char,
at_fault char,
cellphone_user char,
financial_responsibility char,
hazardous_materials char,
movement_preceding_collision char,
other_associated_factor_1 char,
other_associated_factor_2 char,
party_drug_physical char,
safety_equipment_1 char,

8

safety_equipment_2 char,
party_sobriety char,
party_type integer,
school_bus_related char,
statewide_vehicle_type char,
vehicle_make integer,
vehicle_year integer,
primary key (case_id, party_number),
foreign key (case_id) references Collision(case_id) on delete cascade,
foreign key (movement_preceding_collision) references

Movement_Preceding_Collision(movement_preceding_collision),
foreign key (party_type) references Party_Type(party_type),
foreign key (statewide_vehicle_type) references

Vehicle_Type(statewide_vehicle_type),
foreign key (vehicle_make) references Vehicle_Make(vehicle_make)

)

CREATE TABLE Movement_Preceding_Collision(
movement_preceding_collision : char not null,
movement_preceding_collision_description : varchar(26),
primary key (movement_preceding_collision)

)

CREATE TABLE Party_Type(
party_type : integer not null,
party_type_description : varchar(14),
primary key (party_type)

)

CREATE TABLE Vehicle_Type(
statewide_vehicle_type : char not null,
statewide_vehicle_type_description : varchar(35),
primary key (statewide_vehicle_type)

)

CREATE TABLE Vehicle_Make(
vehicle_make : integer not null,
vehicle_make_description : varchar(28),
primary key (vehicle_make)

)

CREATE TABLE Victim (
victim_id integer not null,
case_id integer not null,
party_number integer not null,
safety_equipment_1 char,
safety_equipment_2 char,
victim_degree_of_injury integer,
victim_ejected integer,
victim_role integer,

9

victim_seating_position char,
victim_age integer,
victim_sex char,
primary key (victim_id),
foreign key (case_id, party_number) references Party(case_id, party_number)
on delete cascade,
foreign key (victim_degree_of_injury) references

Degree_Of_Injury(victim_degree_of_injury)
)

CREATE TABLE Degree_Of_Injury(
victim_degree_of_injury : integer not null,
victim_degree_of_injury_description : varchar(24),
primary key (victim_degree_of_injury)

)

General Comments

We basically spent two sessions discussing the model, but Mr. Gueddach first de-
scribed the schema, which Mr. Velez drew using the course conventions. Mr. Gued-
dach also did the transition from the ER schema to the relational schema. Then, Mr.
Hauer did the DDL. As mentioned previously, we first misunderstood the meaning
of "id" in both the victim and party tables, which led to a wrong schema.
With the comments we received from the first deliverable, we updated the ER model,
the relational schema, and the DDLs.

Deliverable 2

Changes made since the first deliverable

We decided to change our ER model to separate in a better way the different at-
tributes. We still have the three main entities: Victim, Collision and Party, but we
added a few others, which are basically dictionaries containing textual descriptions.
We realized that all the different descriptions could be transformed into chars or
integers, so that the main tables contain less amount of data, meaning less storage
used, and everything should become more efficient. The updated ER model can be
found in the first deliverable, in the corresponding section. We also updated the
assumptions, the description of the relational schema, the DDLs and the general
comments.

SQL queries

1. List the year and the number of collisions per year. Suppose there are more
years than just 2018.

SELECT
EXTRACT(YEAR FROM collision_date) as "Year",
COUNT(case_id) as "Number of collisions"

10

FROM Collision
GROUP BY (EXTRACT(YEAR FROM collision_date))
ORDER BY "Year";

2. Find the most popular vehicle make in the database. Also list the number of
vehicles of that particular make.

WITH res AS(
SELECT vehicle_make vm, COUNT(vehicle_make) cvm
FROM Party
GROUP BY vehicle_make
HAVING COUNT(vehicle_make) =

(SELECT MAX(vehicle_count)
FROM (SELECT vehicle_make, COUNT(vehicle_make) vehicle_count
FROM Party
GROUP BY vehicle_make)))

SELECT vehicle_make_description "Most popular vehicle",
(SELECT cvm FROM res) "Quantity"

FROM Vehicle_Make WHERE vehicle_make = (SELECT vm FROM res);

3. Find the fraction of total collisions that happened under dark lighting condi-
tions.

//A = ’daylight’ and B = ’dusk’
SELECT

count1/count2 ratio
FROM

(SELECT CAST(COUNT(case_id) AS float) count1

11

FROM Collision
WHERE lighting != ’A’ AND lighting != ’B’),

(SELECT CAST(COUNT(*) AS float) count2
FROM Collision);

4. Find the number of collisions that have occurred under snowy weather condi-
tions:

// D = snowing
SELECT

count(case_id) as "Number of collisions"
FROM Collision
WHERE weather_1=’D’
OR weather_2=’D’;

5. Compute the number of collisions per day of the week, and find the day that
witnessed the highest number of collisions. List the day along with the number
of collisions.

SELECT
TO_CHAR(collision_date, ’DAY’) as "Day",
COUNT(case_id) as "Number of collisions"

FROM Collision
GROUP BY TO_CHAR(collision_date, ’DAY’)
ORDER BY COUNT(case_id) DESC;

12

SELECT
TO_CHAR(collision_date, ’DAY’) as "Day",
COUNT(case_id) as "Number of collisions"

FROM Collision
GROUP BY TO_CHAR(collision_date, ’DAY’)
HAVING count(case_id)=

(SELECT MAX(count(case_id))
FROM Collision
GROUP BY TO_CHAR(collision_date, ’DAY’));

6. List all weather types and their corresponding number of collisions in descend-
ing order of the number of collisions.

WITH res AS(
SELECT weather_1 w1, weather_2 w2, COUNT(case_id) cn
FROM Collision
GROUP BY weather_1, weather_2)

SELECT
We1.weather_description as "Weather 1",
We2.weather_description as "Weather 2",
R.cn as "Number of collisions"

FROM res R, Weather We1, Weather We2
ORDER BY(R.cn) DESC;

13

7. Find the number of at-fault collision parties with financial responsibility and
loose material road conditions.

// B = loose material
SELECT count(*) as "Number of collisions"
FROM Collision c, Party p
WHERE

p.case_id=c.case_id
AND p.at_fault=’T’
AND financial_responsibility=’Y’
AND

(c.road_condition_1=’B’
OR c.road_condition_2=’B’);

8. Find the median victim age and the most common victim seating position.

14

SELECT
MEDIAN(victim_age) "Median age",
STATS_MODE(victim_seating_position) "Most common position"

FROM Victim;

9. What is the fraction of all participants that have been victims of collisions
while using a belt?

WITH dataset AS (
SELECT safety_equipment_1, safety_equipment_2
FROM Party
UNION
SELECT safety_equipment_1, safety_equipment_2
FROM Victim

)
SELECT count1/count2 "Ratio" FROM
(SELECT CAST(COUNT(*) AS float) count1
FROM dataset
WHERE safety_equipment_1 = ’C’ OR

safety_equipment_2 = ’C’),
(SELECT CAST(COUNT(*) AS float) count2
FROM dataset);

10. Compute the fraction of the collisions happening for each hour of the day (for
example, x% at 13, where 13 means period from 13:00 to 13:59). Display the
ratio as percentage for all the hours of the day.

WITH total_count AS (SELECT CAST(COUNT(*) AS float) val
FROM Collision)
SELECT SUBSTR(collision_time, 1, 2) "Collision hour",

ROUND(100*(count(*) / (SELECT val FROM total_count)), 2)
|| ’%’ "%"

FROM Collision
GROUP BY(SUBSTR(collision_time, 1, 2))
ORDER BY(SUBSTR(collision_time, 1, 2));

15

Design choices

Since in our new design, we identify a party with the pair (case_id, party_number)
(which was a candidate ke y), we no longer needed the party_id attribute so we
dropped it. Though we kept the synthetic victim_id as a primary key in the Vic-
tims table (since it was the only candidate key we found), we made sure that Victim
was a weak Entity of Party (referenced using the pair (case_id, party_number)).
Similarly, following the feedback we got from the first deliverable, we also made
Party a weak Entity of Collision.

Apart from redesigning our ER model, data cleaning was a big part of this second
milestone. One of the issues we encountered was that some case_id’s were too large
to be stored in an integer, even though there are only about 3 million different
case_id’s. To solve this, we decided to relabel the whole case_id column with new
contiguous integers. Doing so meant that we also had to remap all the case_id’s in
Parties and Victims to the new values.

Because the data was dirty, we had to properly clean each field (removing unwanted
symbols, handling null values, reformatting some fields etc...) This involved read-

16

ing in the data as strings using Python scripts and outputting new clean versions.
A difficulty we encountered was to properly handle cases with null values without
loss of information, noticeably in the pcf case. Indeed, we encountered many rows
with null pcf_violation (which is our primary key for the pcf table) but different
pcf_description. We solved this by adding new pcf_violation values, one for each
different pcf_description.

As stated earlier, we decided to create quite a few new tables to store the textual
descriptions of some attributes. In order to do so, we scanned the 3 original csv
files and created synthetic keys for each unique textual description appearing in the
tables. We then had to replace the original textual fields in the original csv’s by the
newly created keys and mark them as foreign keys. By doing so, the queries then
returned the new keys instead of the textual descriptions, which made it harder to
interpret the results.

At first we had decided to keep it as is, since in a real-world application, one can
simply store a dictionary of the mappings between keys and textual description in
the application using the database, with no performance loss. However, we ended
up modifying the queries to display the textual information instead of the keys, as it
was a good exercise and made it easier to present the results in this report (though
it made the queries quite a bit more complex). In our first updated implementation,
the query scheme involved doing joins on the wanted data with the corresponding
textual description tables; however we soon realized that this architecture made
some queries terribly slow. Our next idea was to join with the textual tables only
once the original query had been executed, which brought back the performance we
had again.

17

