
CIL Project Report – Road Segmentation

Alexey Gavryushin, Mateusz Nowak, Anne Marx, Noureddine Gueddach
Group: StackMoreLayers

Department of Computer Science, ETH Zurich, Switzerland

Abstract—Roads are at the center of human mo-
bility, communication, and civilization, with an enor-
mous number of kilometers built around the globe.
Manually segmenting them, e.g. to create digital
maps, has become a tremendous and expensive task.
Yet, with the increasing availability of satellite im-
ages, it is now possible to ease this task using Machine
Learning tools. In this paper, we propose a new
densely connected architecture which we call U-Net
Exp. We compare our model to several baselines on a
benchmark dataset to further showcase the effect of
techniques such as ensembling and transfer learning,
which enormously improved the performance of our
models. Finally, we discuss a novel segmentation
approach with road connectivity prior, based on
Reinforcement Learning.

I. INTRODUCTION

Convolutional neural networks (CNNs) are one
of the most well-known and successful types of
model architecture in image segmentation. One
of the first architectures specifically tailored to-
ward this task was the pyramidically-structured U-
Net [1], which achieved state-of-the-art medical
image segmentation results in 2016. Since then, a
plethora of derivative models have been presented,
including UNet++ [2], Attention U-Net [3], U2-
Net [4], and ResUNet [5]. In this work, we propose
a novel, more densely connected architecture -
U-Net Exp.

Whereas these models are trained under super-
vision, to our knowledge - there is no research in
the field of reinforcement learning (RL) for road
segmentation. Similar disciplines such as medical
image segmentation have priorly used RL to mark
regions of interest and refine the segmentation
([6]) which achieved higher than state-of-the-art
performance. We, therefore, propose a novel RL
architecture with additional built-in segmentation

connectivity to avoid disconnected segmentations
which are unwanted artefacts of supervised deep
neural networks (DNN).

The structure for the remainder of this report
is as follows: In Section II, we describe how we
extended the original data both by acquiring new
images and augmenting existing ones. Section III
outlines the baseline models used to compare our
results against and shows our contributions before
presenting the results of our experiments in Section
IV. We discuss our findings in Section V and
summarize the main ideas of this paper in Section
VI. Further details are given in the APPENDIX.

II. EXTENDING THE DATASET

Our benchmark dataset, provided as part of
a Kaggle competition [7], contains 144 images,
which is inadequate to train a robust model that
can generalize well to unseen data. To solve this
problem, we resort to two different approaches
while leaving the images’ resolution unchanged.
Using these techniques, we expand the dataset to
contain 11179 training images.

A. Augmentation of the old data

We augment each image by randomly applying
geometric transformations such as horizontal and
vertical flips, rotations, translations, and scaling,
as well as lighting transformations - changing the
contrast, luminosity, and saturation. These transfor-
mations allow us to produce new, plausible training
images comparable to the existing samples that
simulate different environmental conditions in the
images. Two variants of this technique are tested,
with varying results. The first creates new data
through the mentioned augmentations once and
saves them. After that, we use the newly generated

and original images for training without further
transformations. The second variant creates new
data on-the-fly by loading an image and altering
it anew in the previously described way before
passing it to the model.

B. Obtaining new data

The second approach focuses on acquiring new
training data. The biggest challenge is to obtain
images comparable in distribution to the original
dataset so as not to skew the total dataset’s dis-
tribution in the direction of the newly gathered
data, worsening the model’s performance on the
benchmark. We carefully investigate the original
dataset and conclude that it consists of images
likely retrieved from the two US cities of Boston,
MA, and Los Angeles, CA. We then automatically
scrape an additional 4335 images from these re-
gions and hand-filter them to 1622 in order to keep
those that we consider similar to the benchmark
samples. Some of the extracted data are visualized
in the APPENDIX.

III. MODELS AND METHODS

For this project, we build a cross-platform
framework1 capable of handling both PyTorch and
TensorFlow models, with an MLflow[8] backend to
store, share and monitor our experiments simulta-
neously. The framework helps us get better insights
into our models by logging necessary details such
as codebase snapshots, command-line arguments,
hyper-parameters used for different training runs,
checkpoints, and model performances.

A. Baselines

To evaluate our models, we compare them to
four baselines, namely:

1) U-Net3+ [9]: The U-Net variant on top of
which our U-Net Exp is built

2) DeepLabV3 [10]: A commonly used
segmentation baseline employing atrous
convolution[11]

3) SegFormer [12]: a Transformer [13]-based
segmentation network

1https://github.com/Futuramistic/CIL2022

4) Lawin [14]: An extension to SegFormer
leveraging a large window attention module
inspired by atrous convolutions in a newly
designed large window head

More details about the baseline network archi-
tectures can be found in the APPENDIX.

B. U-Net Exp

U-Net Exp is created based on the architecture
of UNet3+ [9]. We propose new inter-skip con-
nections that propagate the activation signal from
one part of the network to the other. Additionally,
UNet3+ adds inter-skip connections to its decoder
part. We found in our experiments that similar
links within the encoder structure are beneficial.
We believe we can make more accurate predictions
without further extending the decoder of UNet3+
by creating a richer representation within its en-
coder.

The new inter-skip connection gathers informa-
tion from past layers and convolves each layer’s
result to assemble it into a new input to the existing
UNet decoder nodes - Xi

De. On the encoder side,
we have used the proposed UNet3+ architecture,
which collects information from previous decoder
layers and the outputs from the higher-dimension
representation from the encoder layer. The only
irregularity occurs within the first encoder layer
- the first encoder node’s result equals the last
decoder node’s. An inter-skip connection can be
represented by:

Xi
De =

{
Xi

En , if i = N

X̃i
De , otherwise

X̃i
De = C{C(D(Xk

En))
i−1
k=1, C(Xi

De, C(U(Xk
De))

N
k=i+1},

Equation 1: Decoder inter-skip connection

where C(·) denotes a convolution block, D(·)
and U(·) - downsampling and upsampling respec-
tively.

Each inter-skip connection convolves each
layer’s input with a convolution that uses 64 filters.
Then, all inputs are concatenated and convolved yet
again, but this time - using 320 filters, considering
all the given data. In UNet3+ architecture, this

https://github.com/Futuramistic/CIL2022

convolution replaces the original UNet decoder
node (see Figure 6 in the APPENDIX).

We perform similar steps on the encoder side of
the network (see Equation ??). For each encoder
node Xi

En, we convolve all the previous encoder
nodes’ outputs, except the most recent one, with
64 filters each. Then, the network convolves the
information from the most recent node with the
number of filters equal to its channels. After that,
we concatenate this information and feed it into
the standard UNet encoder node Xi

En, with the
number of filters adjusted by the previous block’s
size, allowing all the relevant information to be
accounted for by the node. Additionally, using
these types of connections, we can seamlessly com-
bine information from other pre-trained networks
by adding respective layers to the encoder inputs
with the new architecture. The only exception is
present within the first decoder node - it works
as a standard UNet decoder node, convolving the
input.

Xi
Ee =

{
C(In) , if i = 1

C{C(D(Xk
En))

i−1
k=1} , otherwise,

(1)

Equation 2: Encoder inter-skip connection

Moreover, we change the ReLU activation
function to the SiLU [15] activation function
(SiLU(x) = x σ(x)) within our architecture.

SiLU alleviates the vanishing gradient problem,
which can occur given our deep architecture. Fur-
thermore, distinguishing between negative values
within our network might prove beneficial as the
lack of ReLU’s activation provides undesired in-
formation. The fact that there is no road should
negatively affect other pixels within some proxim-
ity with an identifiable degree, which SiLU offers
impeccably. However, ReLU outputs a zero signal,
which can be associated with no contribution to
the current prediction. ReLU’s behavior, in this
instance, can be deceiving to our network, as pixels
within the middle of a field should carry different
information between themselves compared to the
pixels next to a road.

The network is also augmented and tested with
different pre-trained models. The VGG [16] pro-

vides a better initial gradient and stabilizes the
learning, allowing us to achieve satisfactory results
quicker. However - it inhibits learning capabilities,
limiting the network’s results.

C. RL Segmentation

Segmentations predicted by supervised networks
typically include artifacts, e.g. some parts of the
segmentation end up disconnected from the others.
Roads are usually straight, continuous and have the
same width, even though they might be partially
occluded by different objects, such as cars and
vegetation. Based on this observation, we attempt
a novel Reinforcement Learning architecture with
built-in connectivity prior. Instead of creating a
one-shot segmentation for the whole input image,
we let an agent ”walk” on the image. At each
small step, it decides in which direction it should
walk, whether to paint the pixels in the agent’s
current position, and if yes - the agent selects the
appropriate ”brush” size. We cast our objective as
an RL optimization problem and solve it using
policy gradients. We present more details (and
issues) with this approach within the APPENDIX.

D. Model Selection

We perform hyper-parameter searches on our
models using the HyperOpt [17] framework, which
uses heuristics to optimize the search speed. Fur-
thermore, we optimize our models’ segmentation
threshold both at train- and inference-time, finding
the one maximizing the F1-score on our train set.
Indeed, we have noticed that some models per-
form better with the prediction threshold slightly
higher or lower than 0.5. Since the models we
use contain parameters millions of parameters, they
can easily overfit the limited data. To alleviate this
problem, we perform 3-fold cross-validation during
hyper-parameter tuning. After finishing the hyper-
parameter selection, we perform a final search for
the best models on three different splits of the
whole training dataset. The best models of each
split are then ensembled together.

E. Ensembling

To further improve our score, we propose two
different ensemble approaches. Our first method

consists of a simple ensembling of the rounded
classifications of each network, using per-pixel
majority voting. The second approach interprets
the per-pixel output of a network as binary class
probabilities. Averaging the predictions of all net-
works in the ensemble before rounding to either
class allows us to account for the results of individ-
ual networks better and measure their confidence,
leading to an even higher performance boost when
compared to our initial approach.

F. Further optimizations

Further optimizations that empirically improve
our results are transfer learning, dynamic sample
weighting, inference-time data augmentation and
using different loss functions. These methods are
further described in the APPENDIX.

IV. RESULTS

We trained all baseline models on 3-fold splits,
while doing a hyper-parameter search on learning
rate and batch-size (where possible due to limited
memory capacity). For each model, we select the
checkpoint yielding the highest (weighted) F1-
Score. The performance of the U-Net Exp network
as compared to our baselines is shown in Table I.

Metrics
Road F1 Macro F1 Weighted F1

U-Net3+ 0.708 0.826 0.912
DeepLabV3 0.732 0.841 0.919
SegFormer 0.762 0.860 0.931

Lawin 0.772 0.865 0.932
U-Net Exp 0.727 0.838 0.920

Table I: Performance on the competition dataset.

We can observe from Table I that the Lawin
network performed the best in comparison to other
networks. Not only did it reach the highest F1
score, but also it surpassed all other metrics of
various baselines. Although we have not exceeded
the results of the heavier network like Lawin, our
U-Net Exp outperforms its base model, the U-
Net3+ and other similar ones, when they do not
use any backbone.

Additional Table III within the Appendix depicts
the impact of transfer learning on these models.

V. DISCUSSION

Even though our solution has not outperformed
Lawin, it surpasses the other state-of-the-art mod-
els when these are not pre-trained. Given the mi-
nuscule number of parameters required to train (see
Table II within the Appendix), our network seems
to be a viable option that sacrifices a fraction of
the performance for enormous gain within training
space. We believe we opened many directions to
explore within our results: Firstly, focusing more
on the feature representation within the encoder
can lead to further advances within the field. Many
architectures overlook the encoder part. As we
presented, the developments within feature extrac-
tions can lead to performance gains. Moreover,
combining knowledge from different divisions of
Machine Learning seems to hold potential and
could expand the capabilities of neural networks.

VI. SUMMARY

In this project, we develop a novel ML frame-
work and extend existing architectures by creating
our U-Net version: the U-Net Exp. We dynamically
vary segmentation thresholds, which can poten-
tially boost the performance of other networks for
other tasks. Moreover, we use techniques such as
ensembling and transfer learning but also adapt
them to the given problem. Finally, we proposed
a novel RL-based architecture that presents some
advantages over mainstream methods but also has
some challenges and limitations in its current state.

Our model, the U-Net Exp, performs slightly
worse when compared with Lawin. However, this
performance gap pales in comparison when we
account for models’ sizes (see Tables II within the
Appendix). We believe that, with a few tweaks, we
can achieve exceptional results without drastically
increasing the U-Net Exp’s size. Furthermore, we
believe the road segmentation domain can benefit
from RL-based approaches, even without consid-
erable success on our side. With suitable rewards,
RL has a huge potential to easily enforce charac-
teristics of the underlying data structure, such as
consistent road width, continuity and straightness.

REFERENCES

[1] O. Ronneberger, P. Fischer, and T. Brox, “U-net:
Convolutional networks for biomedical image seg-
mentation,” 2015.

[2] Z. Zhou, M. M. R. Siddiquee, N. Tajbakhsh, and
J. Liang, “Unet++: A nested u-net architecture
for medical image segmentation,” 2018. [Online].
Available: https://arxiv.org/abs/1807.10165

[3] O. Oktay, J. Schlemper, L. L. Folgoc, M. Lee,
M. Heinrich, K. Misawa, K. Mori, S. McDonagh,
N. Y. Hammerla, B. Kainz, B. Glocker, and
D. Rueckert, “Attention u-net: Learning where to
look for the pancreas,” 2018. [Online]. Available:
https://arxiv.org/abs/1804.03999

[4] X. Qin, Z. Zhang, C. Huang, M. Dehghan, O. Za-
iane, and M. Jagersand, “U2-net: Going deeper
with nested u-structure for salient object detection,”
vol. 106, 2020, p. 107404.

[5] F. I. Diakogiannis, F. Waldner, P. Caccetta, and
C. Wu, “ResUNet-a: A deep learning framework
for semantic segmentation of remotely sensed
data,” ISPRS Journal of Photogrammetry and
Remote Sensing, vol. 162, pp. 94–114, apr 2020.
[Online]. Available: https://doi.org/10.1016%2Fj.
isprsjprs.2020.01.013

[6] Z. Tian, X. Si, Y. Zheng, Z. Chen, and X. Li,
“Multi-step medical image segmentation based on
reinforcement learning,” Journal of Ambient Intelli-
gence and Humanized Computing, pp. 1–12, 2020.

[7] (2022, July) Ethz cil road segmentation. [Online].
Available: https://www.kaggle.com/competitions/
cil-road-segmentation-2022/data

[8] (2022, July) Mlflow: An open source platform for
the machine learning lifecycle. [Online]. Available:
https://mlflow.org/

[9] H. Huang, L. Lin, R. Tong, H. Hu, Q. Zhang,
Y. Iwamoto, X. Han, Y.-W. Chen, and J. Wu,
“Unet 3+: A full-scale connected unet for medical
image segmentation,” 2020. [Online]. Available:
https://arxiv.org/abs/2004.08790

[10] L.-C. Chen, G. Papandreou, F. Schroff, and
H. Adam, “Rethinking atrous convolution for se-
mantic image segmentation,” arXiv:1706.05587,
2017.

[11] F. Yu and V. Koltun, “Multi-scale context aggre-
gation by dilated convolutions,” 2015. [Online].
Available: https://arxiv.org/abs/1511.07122

[12] E. Xie, W. Wang, Z. Yu, A. Anandkumar,
J. M. Alvarez, and P. Luo, “Segformer: Simple
and efficient design for semantic segmentation
with transformers,” 2021. [Online]. Available:
https://arxiv.org/abs/2105.15203

[13] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, L. Kaiser, and I. Polo-
sukhin, “Attention is all you need,” 2017. [Online].
Available: https://arxiv.org/abs/1706.03762

[14] H. Yan, C. Zhang, and M. Wu, “Lawin transformer:
Improving semantic segmentation transformer with
multi-scale representations via large window
attention,” 2022. [Online]. Available: https://arxiv.
org/abs/2201.01615

[15] D. Hendrycks and K. Gimpel, “Gaussian error
linear units (gelus),” 2016. [Online]. Available:
https://arxiv.org/abs/1606.08415

[16] K. Simonyan and A. Zisserman, “Very deep
convolutional networks for large-scale image
recognition,” 2014. [Online]. Available: https:
//arxiv.org/abs/1409.1556

[17] J. Bergstra, D. Yamins, and D. Cox, “Making
a science of model search: Hyperparameter
optimization in hundreds of dimensions for
vision architectures,” in Proceedings of the 30th
International Conference on Machine Learning,
ser. Proceedings of Machine Learning Research,
S. Dasgupta and D. McAllester, Eds., vol. 28,
no. 1. Atlanta, Georgia, USA: PMLR, 17–
19 Jun 2013, pp. 115–123. [Online]. Available:
https://proceedings.mlr.press/v28/bergstra13.html

[18] H. Schwenk and Y. Bengio, “Training methods for
adaptive boosting of neural networks,” in NIPS,
1997.

[19] N. Abraham and N. M. Khan, “A novel focal
tversky loss function with improved attention
u-net for lesion segmentation,” 2018. [Online].
Available: https://arxiv.org/abs/1810.07842

https://arxiv.org/abs/1807.10165
https://arxiv.org/abs/1804.03999
https://doi.org/10.1016%2Fj.isprsjprs.2020.01.013
https://doi.org/10.1016%2Fj.isprsjprs.2020.01.013
https://www.kaggle.com/competitions/cil-road-segmentation-2022/data
https://www.kaggle.com/competitions/cil-road-segmentation-2022/data
https://mlflow.org/
https://arxiv.org/abs/2004.08790
https://arxiv.org/abs/1511.07122
https://arxiv.org/abs/2105.15203
https://arxiv.org/abs/1706.03762
https://arxiv.org/abs/2201.01615
https://arxiv.org/abs/2201.01615
https://arxiv.org/abs/1606.08415
https://arxiv.org/abs/1409.1556
https://arxiv.org/abs/1409.1556
https://proceedings.mlr.press/v28/bergstra13.html
https://arxiv.org/abs/1810.07842

APPENDIX

A. Baseline architectures

1) U-Net3+: This variation of U-Net uses
additional skip connections going from each
node of the encoder to every stage located
below or at the same level in the decoder
(See Figure 1). Additionally, in the decoder
part, the features are not only fed to the di-
rectly succeeding decoding stage but also the
subsequent ones. All this data is convolved
and gathered as a final decoder node’s input.
Finally, the network uses deep supervision
- the loss is on all intermediate stages of
the decoder, treating each node’s output as
a separate network.

2) DeepLabV3: Proposed by Google in 2017
and successor of previous DeepLabV1 and
DeepLabV2, DeepLabV3 uses a ResNet-
101 as a feature extractor, extended with
extra blocks using atrous convolutions (di-
lated convolutions, refer to Figure 2), helping
broaden the field of view of the network,
allowing to capture long-range context.

3) SegFormer: This new state-of-the-art archi-
tecture published in 2021, while still consist-
ing of an encoder and a decoder, breaks away
from previous approaches. The encoder uses
a multi-resolution transformer architecture,
while the encoder interestingly contains an
MLP layer that fuses the extracted multi-
scale features. Refer to Figure 3 for an
overview of the architecture.

4) Lawin: This architecture shares some sim-
ilarities with the SegFormer as it is also a
Transformer and employs MLPs (See Fig-
ure 4). The Lawin network uses a Spatial
Pyramid Pooling (SPP) scheme, similar to
DeepLabV3, replacing the Atrous convolu-
tions with so-called Large Window Atten-
tion, yielding the LawinSPP, which acts as
the decoder part of the network.

B. Metrics

To report our results, we used the ’Road F1-
Score’, the ’Macro F1-Score’, and the ’Weighted

(a) UNet (b) UNet3+ (c) Our Network

Down-sampling Up-sampling Conventional skip
connection

Full-scale inter skip
connection

Full-scale inter skip
connection

Figure 1: The U-Net3+ architecture

Image Scale 1 Image Scale 2

Merge

Image

2x up

2x up

2x up

Image

Small Resolution

Atrous
Convolution

Image Image

Spatial Pyramid Pooling

(a) Image Pyramid (b) Encoder-Decoder (c) Deeper w. Atrous Convolution (d) Spatial Pyramid Pooling
Figure 2. Alternative architectures to capture multi-scale context.

found important to be trained as well. We experiment with
laying out the modules in cascade or in parallel (specifically,
Atrous Spatial Pyramid Pooling (ASPP) method [11]). We
discuss an important practical issue when applying a 3× 3
atrous convolution with an extremely large rate, which fails
to capture long range information due to image boundary
effects, effectively simply degenerating to 1 × 1 convolu-
tion, and propose to incorporate image-level features into
the ASPP module. Furthermore, we elaborate on imple-
mentation details and share experience on training the pro-
posed models, including a simple yet effective bootstrapping
method for handling rare and finely annotated objects. In the
end, our proposed model, ‘DeepLabv3’ improves over our
previous works [10, 11] and attains performance of 85.7%
on the PASCAL VOC 2012 test set without DenseCRF post-
processing.

2. Related Work
It has been shown that global features or contextual in-

teractions [33, 76, 43, 48, 27, 89] are beneficial in cor-
rectly classifying pixels for semantic segmentation. In
this work, we discuss four types of Fully Convolutional
Networks (FCNs) [74, 60] (see Fig. 2 for illustration)
that exploit context information for semantic segmentation
[30, 15, 62, 9, 96, 55, 65, 73, 87].

Image pyramid: The same model, typically with shared
weights, is applied to multi-scale inputs. Feature responses
from the small scale inputs encode the long-range context,
while the large scale inputs preserve the small object details.
Typical examples include Farabet et al. [22] who transform
the input image through a Laplacian pyramid, feed each
scale input to a DCNN and merge the feature maps from
all the scales. [19, 69] apply multi-scale inputs sequentially
from coarse-to-fine, while [55, 12, 11] directly resize the
input for several scales and fuse the features from all the
scales. The main drawback of this type of models is that it
does not scale well for larger/deeper DCNNs (e.g., networks
like [32, 91, 86]) due to limited GPU memory and thus it is
usually applied during the inference stage [16].

Encoder-decoder: This model consists of two parts: (a)

the encoder where the spatial dimension of feature maps
is gradually reduced and thus longer range information is
more easily captured in the deeper encoder output, and (b)
the decoder where object details and spatial dimension are
gradually recovered. For example, [60, 64] employ deconvo-
lution [92] to learn the upsampling of low resolution feature
responses. SegNet [3] reuses the pooling indices from the
encoder and learn extra convolutional layers to densify the
feature responses, while U-Net [71] adds skip connections
from the encoder features to the corresponding decoder acti-
vations, and [25] employs a Laplacian pyramid reconstruc-
tion network. More recently, RefineNet [54] and [70, 68, 39]
have demonstrated the effectiveness of models based on
encoder-decoder structure on several semantic segmentation
benchmarks. This type of model is also explored in the
context of object detection [56, 77].

Context module: This model contains extra modules
laid out in cascade to encode long-range context. One ef-
fective method is to incorporate DenseCRF [45] (with effi-
cient high-dimensional filtering algorithms [2]) to DCNNs
[10, 11]. Furthermore, [96, 55, 73] propose to jointly train
both the CRF and DCNN components, while [59, 90] em-
ploy several extra convolutional layers on top of the belief
maps of DCNNs (belief maps are the final DCNN feature
maps that contain output channels equal to the number of
predicted classes) to capture context information. Recently,
[41] proposes to learn a general and sparse high-dimensional
convolution (bilateral convolution), and [82, 8] combine
Gaussian Conditional Random Fields and DCNNs for se-
mantic segmentation.

Spatial pyramid pooling: This model employs spatial
pyramid pooling [28, 49] to capture context at several ranges.
The image-level features are exploited in ParseNet [58] for
global context information. DeepLabv2 [11] proposes atrous
spatial pyramid pooling (ASPP), where parallel atrous con-
volution layers with different rates capture multi-scale infor-
mation. Recently, Pyramid Scene Parsing Net (PSP) [95]
performs spatial pooling at several grid scales and demon-
strates outstanding performance on several semantic segmen-
tation benchmarks. There are other methods based on LSTM

Figure 2: Illustration of the DeepLabV3’s atrous
convolution, allowing to preserve larger resolution

F1-Score’. Before describing each metric and ex-
plaining the differences, let’s briefly review the F1-
Score. Essentially, this score serves as a compro-
mise between the precision (P = TP

TP+FP) and
the recall (R = TP

TP+FN). Indeed, the precision
can be maximal (=1) even for a model that never
predicts positives. Similarly, we can achieve a
recall of 1 can by having the model systematically
predict positives. But to achieve a high F1-Score,
both precision and recall should be high since its
computation is the harmonic mean of the two:

F1 = 2× P ∗R
P +R

O
verlap

P
atch

E
m
beddings

Transform
er

Block
1 M
LP

Layer

!
"
× #

"
×𝐶$

!
%
× #

%
×𝐶&

!
'&
× #

'&
×𝐶"

!
$(
× #

$(
×𝐶'

!
"
× #

"
×4𝐶

M
LP

!
"
× #

"
×𝑁)*+

Transform
er

Block
2

Transform
er

Block
3

Transform
er

Block
4

O
verlap

P
atch

M
erging

E
fficient

S
elf-A

ttn

M
ix-FFN

×𝑁

U
pS
am
ple

M
LP

!
"!"# ×

#
"!"# ×𝐶$

!
"!"# ×

#
"!"# ×𝐶

!
% ×

#
% ×𝐶

Encoder Decoder

Figure 2: The proposed SegFormer framework consists of two main modules: A hierarchical Transformer
encoder to extract coarse and fine features; and a lightweight All-MLP decoder to directly fuse these multi-level
features and predict the semantic segmentation mask. “FFN” indicates feed-forward network.

29]; introducing boundary information [30–37]; designing various attention modules [38–46]; or
using AutoML technologies [47–51]. These methods significantly improve semantic segmentation
performance at the expense of introducing many empirical modules, making the resulting framework
computationally demanding and complicated. More recent methods have proved the effectiveness of
Transformer-based architectures for semantic segmentation [7, 46]. However, these methods are still
computationally demanding.

Transformer backbones. ViT [6] is the first work to prove that a pure Transformer can achieve
state-of-the-art performance in image classification. ViT treats each image as a sequence of tokens and
then feeds them to multiple Transformer layers to make the classification. Subsequently, DeiT [52]
further explores a data-efficient training strategy and a distillation approach for ViT. More recent
methods such as T2T ViT [53], CPVT [54], TNT [55], CrossViT [56] and LocalViT [57] introduce
tailored changes to ViT to further improve image classification performance.

Beyond classification, PVT [8] is the first work to introduce a pyramid structure in Transformer,
demonstrating the potential of a pure Transformer backbone compared to CNN counterparts in
dense prediction tasks. After that, methods such as Swin [9], CvT [58], CoaT [59], LeViT [60] and
Twins [10] enhance the local continuity of features and remove fixed size position embedding to
improve the performance of Transformers in dense prediction tasks.

Transformers for specific tasks. DETR [52] is the first work using Transformers to build an end-to-
end object detection framework without non-maximum suppression (NMS). Other works have also
used Transformers in a variety of tasks such as tracking [61, 62], super-resolution [63], ReID [64],
Colorization [65], Retrieval [66] and multi-modal learning [67, 68]. For semantic segmentation,
SETR [7] adopts ViT [6] as a backbone to extract features, achieving impressive performance.
However, these Transformer-based methods have very low efficiency and, thus, difficult to deploy in
real-time applications.

3 Method

This section introduces SegFormer, our efficient, robust, and powerful segmentation framework
without hand-crafted and computationally demanding modules. As depicted in Figure 2, SegFormer
consists of two main modules: (1) a hierarchical Transformer encoder to generate high-resolution
coarse features and low-resolution fine features; and (2) a lightweight All-MLP decoder to fuse these
multi-level features to produce the final semantic segmentation mask.

Given an image of size H ×W × 3, we first divide it into patches of size 4 × 4. Contrary to ViT
that uses patches of size 16× 16, using smaller patches favors the dense prediction task. We then
use these patches as input to the hierarchical Transformer encoder to obtain multi-level features at
{1/4, 1/8, 1/16, 1/32} of the original image resolution. We then pass these multi-level features to the
All-MLP decoder to predict the segmentation mask at a H

4 ×
W
4 ×Ncls resolution, where Ncls is the

3

Figure 3: The SegFormer architecture

Tr
an

sf
o

rm
er

B

lo
ck

 1

Tr
an

sf
o

rm
er

B

lo
ck

 2

Tr
an

sf
o

rm
er

B

lo
ck

 3

Tr
an

sf
o

rm
er

B

lo
ck

 4

M
LP

U
p

sa
m

p
le

M
LP

U
p

sa
m

p
le

M
LP

MLP

C
AT

Lawin
R=2

Lawin
R=4

Lawin
R=8

Image
Pooling

M
LP

U
p

sa
m

p
le

M
LP

U
p

sa
m

p
le

M
LP

𝐻

8
×
𝑊

8
× 512

Encoder Decoder

H

W

𝐻

4
×
𝑊

4
× 64

𝐻

8
×
𝑊

8
× 128

𝐻

16
×
𝑊

16
× 256

𝐻

32
×
𝑊

32
× 512

𝐻

4
×
𝑊

4
× 512

𝐻

4
×
𝑊

4
× 48

Figure 3. The overall structure of Lawin Transformer. The image is fed into the encoder part,which is a MiT. Then the features from the
last three stages are aggregated and fed into the decoder part, which is a LawinASPP. Finally the resulted feature is enhanced with low-level
information by the first-stage feature of encoder. ”MLP” denotes the multi-layer perceptron. ”CAT” denotes concatnating the features.
”Lawin” denotes large window attention. ”R” denotes the ratio of the size of context patch to query patch.

O
(
P 2
)
, when the spatial size of C is increased by R times,

the computational complexity increases to O
(
R2P 2

)
. Un-

der this circumstance, the computation of attention is not
limited to the P × P local patch, and even unaffordable
if ratio R or input resolution is very large. To preserve the
original computational complexity, we pool C to an abstract
tensor with a downsampling ratio of R, reducing the spa-
tial size of context patch back to (P, P). However, there
are certain drawbacks associated with such an easy process.
The downsampling of context patch inevitably discards the
abundant dependencies between Q and C especially as R
is large. To mitigate the inattention, we naturally adopt the
multi-head mechanism and let the number of head strictly
equal to R2, thereby formulating the attention matrix from(
P 2, P 2

)
to
(
R2, P 2, P 2

)
. It is notable that the number of

head has no impact on the computational complexity.

There has been researches revealing that, with certain
techniques regularizing the head subspace, multi-head at-
tention can learn desired diverse representations [12,16,18].
Considering that the spatial information becomes abstract
after downsampling, we intend to strengthen the spatially
representational power of multi-head attention. Motivated
by that in MLP-Mixer the token-mixing MLP is com-
plementary to channel-mixing MLP for gathering spatial
knowledge, we define a set of head-specific position-mixing
MLP = {MLP1,MLP2, ...,MLPh}. As illustrated in
Fig. 2, every head of the pooled context patch is pushed into
its corresponding token(position)-mixing MLP, and spatial
positions within the same head communicate each other
in an identical behavior. We term the resulting context as
position-mixed context patch and denote it as CP, which is

calculated by:

Ĉ = Reshape
(
h,C/h,P2

)
(ϕ (C)) , (8)

Ch = MLPh

(
Ĉh

)
+ Ĉh, (9)

CP = Reshape
(
C,P2

)
(concat [C1;C2; ...;Ch]) , (10)

where Ĉh denotes the h-th head of Ĉ and MLPh ∈
RP2×P2

is the h-th transformation strengthening the spatial
representations for the h-th head, and ϕ denotes the average
pooling operation. With the position-mixed context CP, we
can reformulate the Eq. (3) and Eq. (4) as follows:

A = softmax

(
(WqQh)

(
WkC

P
h

)T
√
Dh

)(
WvC

P
h

)
, (11)

MHA = concat [A1 ;A2 ; ...;Ah]Wmha. (12)

One primary concern is on the overhead of MLP, so we
list the computational complexity of local window attention
and large window attention:

Ω (Lowin) = 4(HW)C 2 + 2(HW)P2C , (13)

Ω (Lawin) = 4(HW)C 2 + 3(HW)P2C , (14)

where H and W are the height and width of entire image
respectively, and P is the size of local window. Since P 2,
usually set to 7 or 8, is much smaller than C in high-level
features, the extra expense induced by MLP is reasonably
neglectable. It is admirable that the computational com-
plexity of large window attention is independent of the ratio
R.

4

Figure 4: The Lawin architecture

1) Road F1-Score: This metric is the F1-Score
computed on the ’Road’ class as the number of
true positives (TP) is the number of road pixels
classified as such.

2) Macro F1-Score: Similar to how we compute
the Road F1-Score, we can calculate the Non-Road
F1-Score. But to have one final value, we need to
average the F1-Scores of both classes. The simplest
way to do so is to compute the arithmetic mean,
and this is directly what the Macro F1-Score does:

F1macro =
F1road + F1background

2

This metric considers all classes of equal impor-
tance, which is often desirable.

3) Weighted F1-Score: Note that this is the
score used by the Kaggle competition. As its name
suggests, the weighted F1-Score weighs the scores
of each class by their fraction of presence in the
dataset:

F1weighted = %road × F1road

+%background × F1background

A drawback is that contrary to its macro counter-
part, the weighted F1-Score can still be very high

even if the model performs poorly for a highly
underrepresented class.

C. Further Optimization

Here we discuss further optimizations and tricks
that empirically improved our submitted results.

1) Transfer Learning: We pre-train on our much
larger scraped dataset and then fine-tune on the
original dataset, boosting the performance. This
technique allows the network to learn richer fea-
tures while retaining maximal performance on our
dataset of interest.

2) Dynamic sample weighting: Similar to Ad-
aBoost [18] but using only one model, we uni-
formly initialize all training sample weights. The
weights are updated during training after each
epoch by putting more weight on the samples
that incur higher losses, proportionally to (1 −
F1-Score). With this technique, the model is en-
couraged to train more on its weakness, which is
especially useful for learning narrower roads that
are often not segmented correctly. We then pick the
final model from the last training checkpoint, other
than creating ensembles with previous checkpoints.

3) Inference-time data augmentation: At
inference-time, not only do we feed the test image
to the network but also its rotated and flipped
versions. For each test image, we ensemble the
prediction on itself with its augmented versions.
We found this scheme slightly helps to increase the
performance as it balances the variance of the test
sample, regarding the training data distribution.

4) Different loss functions: We have tried dif-
ferent loss functions to tackle the class imbalance.
Namely - due to the nature of some images, roads
were not as present as the background was. We
have looked into possible solutions, and Focal
Tversky loss [19] yields the best performance in
the experiments on the U-Net Exp side.

D. Inconclusive experiments

We worked on other approaches without achiev-
ing the desired results. Nevertheless, we discuss
them here as we believe these are promising ideas
and could be further polished in future work:

1) RL based Segmentation (continued): We give
more details about the RL-based segmentation
framework we briefly introduced in the main part.
More generally speaking, the agent learns to paint
small areas of the image with a circular brush
that can either be put down to paint a road or
is variable in width. In our first try, we use a
policy network that takes in as input the following
observation from the environment, which varies
between experiments:

1) A small image patch of the area surrounding
the current position of the agent

2) Information on the paint state (paint a road
or don’t paint a road)

3) The history of the latest past actions
4) A minimap marking the agent’s position on

the training image as well as its past trajec-
tory

This information is forwarded through convolu-
tional layers for feature extraction before being fed
into an MLP that outputs the actions, which vary
between experiments:

1) Change in orientation (where to move the
agent and if the brush is put down, in which
direction to paint the road)

2) Change in magnitude of the movement (if the
brush is put down, the magnitude determines
the length of the painted road within the seen
patch as well)

3) Brush size (as the circle radius)
4) Brush state (put down to paint a road or not)

The input information is supposed to help the agent
stay consistent in its predictions over time (e.g.,
same brush size and walking direction for a straight
road and steady road width). It is also enforced to
segment and ”walk” over the complete image. This
is further enforced by the rewards, which contain
multiple terms (depending on the experiments):

1) Positively reward the number of correctly
classified pixels and penalize wrong predic-
tions

2) Positively reward if new areas are explored
(otherwise the agent would stay put)

3) Penalize changes in the brush size if the
painting direction does not change and vice

versa (this allows change in road width when
taking a turn onto another road, but otherwise
enforces same road width and straightness)

4) A small time penalty in order to encourage
the agent to segment the image efficiently

Reward functions are notoriously hard to tune
in reinforcement learning, and despite many dis-
tinct experiments with various parameters, action
spaces, and rewards, the network did not learn
anything. One reason is that the training takes
a long time because the trajectory sampling is
inefficient. Hence - we only had a few limited
opportunities to adapt the code.

Therefore, we decide to address the high com-
plexity of the reward function by attempting a
different approach. We use the fact that the ground
truths are readily available to help the network
learn a valuable policy. This availability allows us
to create a hand-crafted algorithm, which we call
the Irresistible Hitchhiker (IR). Given a binary seg-
mentation map, the IR moves along the roads and
paints them. While the new network still takes in as
input a patch of the neighboring area, the objective
is no longer maximizing a reward function that
depends on the number of (in)correctly segmented
pixels and other parameters but rather is more sim-
ilar to a regression problem, where the loss metric
is the discrepancy between performed movements
and those computed by the hand-crafted algorithm
mentioned above. Therefore, we train the network
to follow the IR’s actions.

Despite a great effort, we still did not manage
to have the agent learn anything more significant
than moving along straight lines. No benchmark
for road segmentation in RL to compare our ideas
to is a big issue, leaving us only with an inefficient
feedback loop made out of our limited tries. Never-
theless, we believe this approach still has potential
and could be further explored in future work.

2) Introducing a secondary GAN Loss: When
considering the segmentations outputted by some
model, it is almost always the case that a human
can surely tell it apart from a hand-made segmenta-
tion. Indeed, automatic segmentations are usually
characterized by the presence of spurious blobs,
as well as roads that are either disconnected or

with varying widths. The idea is to introduce a
discriminator model jointly learned with the seg-
mentation model that distinguishes between gener-
ated segmentations (fake) and real ones. The GAN
loss is then added to the base segmentation loss
(dice, BCE, or any other loss) as a measure of
the cleanliness of the segmentation. In practice,
experiments with this scheme did not manage to
improve the base segmentations, most probably due
to training instability.

3) Incremental image segmentation: The idea is
to have an image through a first network that out-
puts a segmentation. Then, we feed it together with
the original image through the (same) network.
The hope was for the preliminary segmentation to
act similarly to an attention channel (the network
would learn to focus more on the parts segmented
in the previous pass and hence output a better
final segmentation). While this scheme maintains
the same number of parameters, in practice, it
probably makes the optimization problem much
harder, which makes it harder for the network to
converge towards a favorable configuration.

4) AdaBoost: We adapt the classical AdaBoost
algorithm to the task of image segmentation. Be-
fore the first training, we initialize all samples with
the same weight in a random dataset sampler. After
a model has finished training, we use the road F1-
score of each training sample as a weight for the
next training. This approach is different from the
binary classification in the original algorithm. With
the road F1-score, we hope to inhibit the model’s
tendency to ignore small roads and predict false
negatives. Furthermore, we determine the model’s
weight by the F1 score on the validation dataset as
a measure for generalization on unseen data. We
try AdaBoost by ensembling ten models but find no
improvements regarding the F1-score. A possible
explanation is that the models get biased towards
the initially bad weights and overfit on them. A
possible solution is to decrease the impact of the
current performance on the sample weight more
than in AdaBoost, only changing it very slightly.
Furthermore, ensembling many more models could
also improve the result, which was no tested due
to lack of time.

5) MonoBoost: As opposed to AdaBoost, which
trains multiple models, this new variant only trains
a single one, as the name suggests. The motivation
behind this is simple: AdaBoost typically trains
weak (and hence fast) learners, whereas we are
trying to apply a similar technique on top of
strong models that require a long training time.
At each iteration, instead of training a new model
from scratch, MonoBoost continues training the
model from the previous iteration but with different
sample weights. We perform the recomputation of
weights as follows: each training sample passes
through ResNet, known as a feature extractor,
where the output at layer 7c is selected. For the
ith sample, let’s call the outputted feature vector
fi,train. We do the same for each validation sample
j to obtain the feature vectors fj,val. From these
vectors, we can compute a similarity phiij between
training sample i and validation sample j as:

ϕij = e−dij ∈ [0, 1], dij = L2(fi,train − fj,val)

with L2 denoting the L2-norm. At the end of
each iteration, we compute the error ej for each
validation sample j using the weighted F1-score
as:

ej = 1− ”weighted F1-score(j)”

The new weight for sample i is finally given by:

wi =
1

Z

∑
j

ϕijej ,

where Z is a normalization constant:

Z =
∑
i,j

ϕijej

that makes sure
∑

i wi = 1. Since we only have
a single final model, the averaging performed by
AdaBoost is implicit, and we only need to retain
the last checkpoint obtained after a fixed number
of iterations. Unfortunately, though this scheme
did not deteriorate our results, it also did not
manage to improve them. A possible next step
would be to create our feature extractor specifically
trained on our segmentation dataset instead of the
generic ResNet, which would be able to yield more
meaningful similarities between the training and
the validation samples.

E. The scraped dataset

Though not perfectly similar to the original data,
our scraped dataset is still relatively close to Boston
and Los Angeles roads given in the original dataset.
We depict the comparison between samples of both
datasets in Figure 5.

F. Model size comparison

Number of parameters

U-Net3+ 16.13M
U-Net3+ (+VGG) 31.92M

DeepLabV3 39.64M
SegFormer 84.7M

Lawin 86.9M
U-Net Exp 24.48M

U-Net Exp (+ VGG) 48.30M

Table II: The number of parameters used by each
network. (+VGG) indicates the size of the model
with a VGG backbone.

G. UNet vs. UNet3+ vs. U-Net Exp

We visualize side-by-side the original UNet, the
UNet3+, as well as our U-Net Exp architecture in
Figure 6

H. Example segmentations

Figure 7 shows the segmentations predicted by
a Lawin [14] model on the 25 images of our
validation set, overlayed on top of the satellite
views.

Figure 5: Comparison between samples from the original dataset (top) and our scraped dataset (bottom)

(a) UNet (b) UNet3+ (c) Our Network

Down-sampling Up-sampling Conventional skip
connection

Full-scale inter skip
connection

Full-scale inter skip
connection

Figure 6: Comparison between UNet, UNet3+ and our architecture

Figure 7: Example segmentation given by the
Lawin network. True positives are shown in green,
false negatives in blue and false positives in red.

I. Erroneous ground truths

We notice that the trained models sometimes
output more correct segmentations than the given
ground truth masks, which get classified as errors.
While this sets a plateau on the maximum achiev-
able F1-Score, it suggests that neural networks
can guide humans and correct their mistakes. We
demonstrate two such examples in Figure 8.

J. Impact of transfer learning

The U-Net3+ as well as our U-Net Exp use the
VGG-19 backbone whereas the DeepLabV3, the
SegFormer and Lawin use the ResNet-50 back-
bone:

(a) The network correctly classifies the bottom-left part of the
image as being part of a road, yet the ground truth disagrees.

(b) The network correctly classifies the top-right corner of
the image as a road, whereas the ground truth classifies the
trees as roads.

Figure 8: Ground truth anomalies. True positives
are shown in green, false negatives in blue and false
positives in red.

Metrics
Road F1 Macro F1 Weighted F1

ResNet-50
DeepLabV3 0.738 0.845 0.923
SegFormer 0.766 0.861 0.931

Lawin 0.772 0.865 0.932

VGG-19
U-Net3+ 0.707 0.826 0.914

U-Net Exp 0.712 0.830 0.916

Table III: Performance of the baselines and our
model evaluated on the competition dataset, using
transfer learning.

	Introduction
	Extending the dataset
	Augmentation of the old data
	Obtaining new data

	Models and Methods
	Baselines
	U-Net Exp
	RL Segmentation
	Model Selection
	Ensembling
	Further optimizations

	Results
	Discussion
	Summary
	References
	Baseline architectures
	Metrics
	Road F1-Score
	Macro F1-Score
	Weighted F1-Score

	Further Optimization
	Transfer Learning
	Dynamic sample weighting
	Inference-time data augmentation
	Different loss functions

	Inconclusive experiments
	RL based Segmentation (continued)
	Introducing a secondary GAN Loss
	Incremental image segmentation
	AdaBoost
	MonoBoost

	The scraped dataset
	Model size comparison
	UNet vs. UNet3+ vs. U-Net Exp
	Example segmentations
	Erroneous ground truths
	Impact of transfer learning

